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L Introduction

Wavelets have been the subject of a large amount of research during the past few years.
As the research has developed from the initial study of the properties of wavelets into the area of
their application, it is natural to start exploring the notion of “adaptive wavelets,” or the possible
role of wavelets in adaptive systems. This report first provides a brief overview of the basic
concepts in wavelet decomposition. We then introduce the problem of finding the wavelet
coefficients of the autoregressive (AR) coefficients of a time-varying signal, and propose an -
adaptive method. '

II. Signal Decomposition via Wavelets

The Discrete Wavelet Transform (DWT), also known as Discrete Wavelet Decomposition,
is a multiresolution/multirate analysis used to decompose a signal into successive layers at
coarser resolutions plus detail signals at each resolution [1]. Thus a signal may be represented as
a sum of two functions, one representing the coarse approximation based on a lowpass
approximation of the signal, and the second representing the detail signal based on a highpass
approximation. For one level of decomposition, this would be:

() =2Zcip Pra®+Zdin Yin®
=f1v+w

where @ represents a lowpass filter and is called the scaling function, and ¥ represents the
highpass filter, and is known as the wavelet.

The outputs of a wavelet decomposition are coefficients of the coarse signal at the current
level (¢ ,n where j is the level and 7 is the index of the coefficient) and the coefficients of the
detail signal (dj ,). These coefficients are given by:

Cjn=<fjy, P1n>

dj,n = <f_],W N \Pl’n>

The filter bank formed by the highpass and lowpass filters must be a Quadrature Mirror
Filter (QMF) and must form a Perfect Reconstruction Filter Bank (PRFB). Therefore, if the
discrete lowpass scaling function is implemented as the FIR filter with impulse response hg(n),
then the highpass wavelet filter /;(n) must satisfy [1]:

hy(n) = (-1)"*1ho(N-1-n)

where N is the length of the filter (which must be even).

The implementation of the DWT can be performed with a fast algorithm known as
multiresolution pyramid decomposition [2]. To compute the coefficients ¢ and d at the first level,
the signal is passed in parallel through the highpass and lowpass filters; then each output is
decimated by two, since the frequency band has been cut in half for each signal. The next level
of decomposition is attained by performing the same operation on the lowpass output from the
previous level. Figure 1(a) diagrams three levels of this decomposition for a signal x(n), and the
corresponding synthesis operation for reconstructing the signal is shown in Figure 1(b). Note
that the successive filtering and decimation results in an octave band or constant relative
bandwidth filter bank (or subbands), as shown in Figure 2(a).
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Figure 1. (a) A 3-level pyramidal decomposition filter bank and (b) the corresponding synthesis bank.
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Figure 2. (a) Division of the frequency domain for the wavelet transform, to a decomposition depth of 4.
(b) Division of the frequency domain for the STFT.

Wavelet decomposition has great potential in time-frequency analysis. It has been shown
that the wavelet transform utilizes superior time localization at high frequencies (due to the lower
frequency bands having a higher decimation factor [see Figure 1(a)]), and superior frequency
~localization at low frequencies (due to the narrower bandwidth for lower frequencies [see Figure
2(a)]). This is shown by the time-frequency plane tiling in Figure 3(a). The Short-Time Fourier
Transform (STFT), which is a commonly used method of time-frequency analysis, uses the
uniform tiling of the time-frequency plane in Figure 3(b) based on a constant bandwidth filter
bank, shown in Figure 2(b), which does not allow for the superior localization capabilities of the
wavelet decomposition. This feature of wavelets makes them particularly suited to system
modeling and event detection applications.
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Figure 3. Time-frequency plane tiling for (a) wavelets, and (b) the STFT.

III. Modeling an AR Process Using Adaptive Wavelets

If one models a time-varying AR process by expanding the AR coefficients using a
wavelet basis, the resulting system is severely underdetermined, as we will show. We propose a
method to find the wavelet coefficients using an adaptive structure.

The AR/Wavelet Model

Let x(n) be a discrete AR process. Then if the process is time-varying, the AR coefficients
a(n;k) will depend on n, and the process is modeled by:

P .
x(n)= Za(n;k)x(n —k)+e(n) M

k=1

where p is the AR order. The problem we wish to address is finding the optimal AR coefficients
a(n;k) for modeling this time-varying process.

If x(n) were stationary or slowly varying, one approach would be to find the a(n k) using
an adaptive method. However, the weakness with using standard adaptive techniques for
tracking rapidly varying coefficients is that if the system is varying too quickly in relation to the
convergence time of the adaptive algorithm, the algorithm will not converge. If, however, we
view each of the AR coefficients as a signal, we can expand these signals using an orthonormal
basis. The resulting coefficients of this expansion will be time-invariant, thus the convergence is
not an issue.

In [5], Tsatsanis and Giannakis propose using a wavelet basis to decompose the
coefficients a(n;k) with respect to an orthonormal basis. They show the development for the
following wavelet expansion for each a(n;k):

o -~ :
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where hy(n) and h,(n) are the discrete scaling function and wavelet, respectively. Jpqy is the
depth of the wavelet expansion, the ¢’s are the scaling function coefficients, and the d’s are the
wavelet coefficients. A two-level decomposition and synthesis is shown graphically in Figure 4.
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Figure 4. Decomposition and synthesis of a(n;k) to a depth of Jmax = 2.

Substituting (2) into (1) results in the following expansion for x(n):

P P JImax
x(n)= Z 3 el Rear) (n =27 m)x(n k) + ZZ Y AR (n =20 m)x(n— )]+ e(n) ©)
= m k=1 j= m

This is a massively underdetermined set of equations for ¢ and d unconstrained. Tsatsanis
and Giannakis propose a method for setting most of the coefficients to zero in order to obtain a
system of equations which can be solved.

We propose leaving all wavelet coefficients unconstrained, and using an adaptive
approach to find the optimal solution. We are currently developing adaptive techniques for this
process.
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